Behavioral and Neurochemical Characterization of New Mouse Model of Hyperphenylalaninemia
نویسندگان
چکیده
Hyperphenylalaninemia (HPA) refers to all clinical conditions characterized by increased amounts of phenylalanine (PHE) in blood and other tissues. According to their blood PHE concentrations under a free diet, hyperphenylalaninemic patients are commonly classified into phenotypic subtypes: classical phenylketonuria (PKU) (PHE > 1200 µM/L), mild PKU (PHE 600-1200 µM/L) and persistent HPA (PHE 120-600 µM/L) (normal blood PHE < 120 µM/L). The current treatment for hyperphenylalaninemic patients is aimed to keep blood PHE levels within the safe range of 120-360 µM/L through a PHE-restricted diet, difficult to achieve. If untreated, classical PKU presents variable neurological and mental impairment. However, even mildly elevated blood PHE levels, due to a bad compliance to dietary treatment, produce cognitive deficits involving the prefrontal cortical areas, extremely sensible to PHE-induced disturbances. The development of animal models of different degrees of HPA is a useful tool for identifying the metabolic mechanisms underlying cognitive deficits induced by PHE. In this paper we analyzed the behavioral and biochemical phenotypes of different forms of HPA (control, mild-HPA, mild-PKU and classic-PKU), developed on the base of plasma PHE concentrations. Our results demonstrated that mice with different forms of HPA present different phenotypes, characterized by increasing severity of behavioral symptoms and brain aminergic deficits moving from mild HPA to classical PKU forms. In addition, our data identify preFrontal cortex and amygdala as the most affected brain areas and confirm the highest susceptibility of brain serotonin metabolism to mildly elevated blood PHE.
منابع مشابه
Early-onset behavioral and neurochemical deficits in the genetic mouse model of phenylketonuria
Phenylketonuria (PKU) is one of the most common human inborn errors of metabolism, caused by phenylalanine hydroxylase deficiency, leading to high phenylalanine and low tyrosine levels in blood and brain causing profound cognitive disability, if untreated. Since 1960, population is screened for hyperphenylalaninemia shortly after birth and submitted to early treatment in order to prevent the ma...
متن کاملLarge Deformation Characterization of Mouse Oocyte Cell Under Needle Injection Experiment
In order to better understand the mechanical properties of biological cells, characterization and investigation of their material behavior is necessary. In this paper hyperelastic Neo-Hookean material is used to characterize the mechanical properties of mouse oocyte cell. It has been assumed that the cell behaves as continuous, isotropic, nonlinear and homogenous material for modeling. Then, by...
متن کاملPrenatal nicotine exposure mouse model showing hyperactivity, reduced cingulate cortex volume, reduced dopamine turnover, and responsiveness to oral methylphenidate treatment.
Cigarette smoking, nicotine replacement therapy, and smokeless tobacco use during pregnancy are associated with cognitive disabilities later in life in children exposed prenatally to nicotine. The disabilities include attention deficit hyperactivity disorder (ADHD) and conduct disorder. However, the structural and neurochemical bases of these cognitive deficits remain unclear. Using a mouse mod...
متن کاملThe effects of aqueous cinnamon bark extract and cinnamaldehyde on neurons of substantia nigra and behavioral impairment in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in substantia nigra. In recent years, there have been interests in the role of the free radical damage in PD. Cinnamon and its derivative, cinnamaldehyde acts as powerful antioxidant and anti-inflammatory agents. This research focused on the effects of cinnamon extract and cinnamald...
متن کاملBehavioral and Neurochemical Phenotyping of Mice Incapable of Homer1a Induction
Immediate early and constitutively expressed products of the Homer1 gene regulate the functional assembly of post-synaptic density proteins at glutamatergic synapses to influence excitatory neurotransmission and synaptic plasticity. Earlier studies of Homer1 gene knock-out (KO) mice indicated active, but distinct, roles for IEG and constitutively expressed Homer1 gene products in regulating cog...
متن کامل